

Certified Kubernetes Application Developer (CKAD)

- 5 days
- Lecture & Labs

Course Overview

This class prepares students for the Certified Kubernetes Application Developer (CKAD) exam. Kubernetes is a Cloud Orchestration Platform providing reliability, replication, and stability while maximizing resource utilization for applications and services. By the conclusion of this hands-on training you will go back to work with all necessary commands and practical skills to empower your team to succeed, as well as gain knowledge of important concepts like Kubernetes architecture and container orchestration. We prioritize covering all objectives and concepts necessary for passing the Certified Kubernetes Application Developer (CKAD) exam. You will command and configure a high availability Kubernetes environment (and later, build your own!) capable of demonstrating all "K8s' features discussed and demonstrated in this course. Your week of intensive, hands-on training will conclude with a mock CKAD exam that matches the real thing.

Review this course online at https://www.alta3.com/courses/kubernetes

Who Should Attend

- Anyone who plans to work with Kubernetes at any level or tier of involvement
- Any company or individual who wants to advance their knowledge of the cloud environment
- Application Developers
- Operations Developers
- IT Directors/Managers

What You'll Learn

All topics required by the CKAD exam, including:

- Deploy applications to a Kubernetes cluster
- Use Kubernetes primitives to implement common deployment strategies (e.g. blue/green or canary)
- Define, build and modify container images
- Implement probes and health checks
- Understand multi-container Pod design patterns (e.g. sidecar, init and others)
- Understand ConfigMaps
- Create & consume Secrets
- Troubleshooting and debugging tools
- Provide and troubleshoot access to applications via services
- Use Ingress rules to expose applications

Outline

AI LLM Toolkit

• 🖳 Lecture + Lab: Large Language Model toolkit for AI Solution Assistance

From Containers to Kubernetes

- 🗐 Lecture: Kubernetes Architecture
- \blacksquare Lecture: Pods and the Control Plane
- 🖳 Lecture + Lab: Define, build and modify container images
- 🗐 Lecture: Kubernetes the Alta3 Way
- 🖳 Lecture + Lab: Deploy Kubernetes using Ansible

Pod Basics

- 🗐 Lecture: YAML
- \blacksquare Lecture: Manifests for Pods
- \blacksquare Lecture + Lab: Create and Configure Basic Pods
- 🗐 Lecture: API Versioning and Deprecations

Cluster Basics

- 🗐 Lecture: Namespaces and Fundamental Kubectl Commands
- 🖳 Lecture + Lab: Creating and Configuring Namespaces
- 🗐 Lecture: Kubectl get and sorting
- \blacksquare Lecture + Lab: Listing Resources with kubectl get

Container Health, Security, and Observability

- 🗐 Lecture: Kubectl port-forward
- 🖳 Lecture + Lab: Kubectl port-forward
- 🗐 Lecture: Kubectl exec and cp
- \blacksquare Lecture + Lab: Performing Commands inside a Pod
- 🗐 Lecture: Readiness and Liveness Probes
- 🖳 Lecture + Lab: Implement Probes and Health Checks
- 💭 Lecture: Pod Security Contexts
- 🖳 Lecture + Lab: Applying Security Contexts

Resource Management

- 🗐 Lecture: Limits, Requests, and Namespace ResourceQuotas
- 🖳 Lecture + Lab: Defining Resource Requirements, Limits and Quotas
- \blacksquare Lecture + Lab: Kubectl Top and Application Monitoring
- \blacksquare Lecture: Admission Controller
- 🖳 Lecture + Lab: Create a LimitRange AdmissionController

RBAC

- \blacksquare Lecture: Role Based Access Control
- \blacksquare Lecture + Lab: Service Accounts
- 🗐 Lecture: Contexts
- 🖳 Lecture + Lab: Cluster Access with Kubernetes Context

Logging

- \blacksquare Lecture: Utilize Container Logs
- \Box Lecture + Lab: Kubectl Log Command
- 💭 Lecture: FluentD and RsysLog

Ephemeral Storage

- 🗐 Lecture: ConfigMaps and Volume Mounting
- 🖳 Lecture + Lab: Persistent Configuration with ConfigMaps
- 🗐 Lecture: Secrets
- 🖳 Lecture + Lab: Create and Consume Secrets

Persistent Storage

- 🗐 Lecture: Persistent Volumes, Claims, and StorageClasses
- 🖳 Lecture + Lab: Using PersistentVolumeClaims for Storage
- \blacksquare Lecture: Persistent Volumes with CSI
- \Box , Lecture + Lab: CSI Storage Solution: NFS

Multi-Container Pod Design

- \blacksquare Lecture: Multi-Container Pods
- \blacksquare Lecture + Lab: Configuring a Fluentd Logging Sidecar
- \blacksquare Lecture: Init Containers
- 🖳 Lecture + Lab: Using Init Container for Pod Initialization

Deployments

- 💭 Lecture: Labels
- \blacksquare Lecture + Lab: Labels and Selectors
- 🗐 Lecture: Annotations
- \Box Lecture + Lab: Insert an Annotation
- 🕮 Lecture: ReplicaSets
- \blacksquare Lecture + Lab: Create and Configure a ReplicaSet
- 💭 Lecture: DaemonSets
- 💭 Lecture: Deployments Purpose and Advantages
- 🖳 Lecture + Lab: Create and Configure a Deployment
- 🗐 Lecture: Deployments Rollout
- 🖳 Lecture + Lab: Performing Rolling Updates and Rollbacks
- 🗐 Lecture: Blue/Green and Canary Deployment Strategies
- 🖳 Lecture + Lab: Advanced Deployment Strategies
- 🗐 Lecture: Deployments Horizontal Scaling
- I Challenge: Horizontal Pod Autoscaler

Jobs and CronJobs

- \blacksquare Lecture: Jobs and CronJobs
- 🖳 Lecture + Lab: Running and Executing a Job
- \blacksquare Lecture + Lab: Scheduling a CronJob

Affinity and Anti-Affinity

- 🗐 Lecture: Taints, Tolerations
- \blacksquare Lecture + Lab: Tainted Nodes and Tolerations

NetworkPolicy

- 💭 Lecture: NetworkPolicy
- 🖳 Lecture + Lab: Network Policy Basics
- 🖳 Lecture + Lab: Namespace Network Policy

Services and Ingress

- ${\ensuremath{\fbox{\tiny P}}}$ Lecture: Networking with Services
- 🖳 Lecture + Lab: Expose Applications via Services
- \blacksquare Lecture: Networking Plugins
- 🗐 Lecture: Ingress Controllers
- \blacksquare Lecture + Lab: Expose Applications via Ingress Controllers

DNS

- \blacksquare Lecture: Hostnames and FQDNs
- \Box Lecture + Lab: Utilizing FQDNs

The Helm Package Manager

- 🗐 Lecture: Helm
- \blacksquare Lecture + Lab: Deploy Existing Packages via Helm

Extending Kubernetes

- \blacksquare Lecture: Custom Resource Definitions
- \blacksquare Lecture + Lab: Introduction to CRDs

Troubleshooting

• \Box Lecture + Lab: Troubleshooting

CKAD

• 🗐 Lecture: Tips to Pass your CKAD Exam!

Prerequisites

Next Courses

- CKA (https://alta3.com/courses/cka)
- Developing Microservices (https://alta3.com/courses/microservices)