

AI-Driven Road Management

- 5 Days
- Lecture and Hands-on Labs

Course Overview

This course equips transportation professionals with the knowledge and skills to transform road asset management using artificial intelligence (AI) and computer vision (CV). Participants will explore how AI-driven systems enable predictive maintenance, optimize resource allocation, and support data-driven decisions for road networks. Through a blend of lectures, case studies, and hands-on labs, attendees will learn to define functional and non-functional requirements, select appropriate AI models, and craft specifications for AI-based road management solutions. The course is vendor-neutral, focusing on universal principles and technologies applicable to any DoT, ensuring participants can envision and implement AI solutions tailored to their organization's needs.

Who Should Attend

- Project Managers
- Architects
- Developers
- Data Acquisition Specialists

What You'll Learn

- Understand core AI and CV concepts for road inspection and asset management.
- Identify the roles of data, human oversight, and technology in AI-driven systems.
- Define essential functional and non-functional requirements for AI road management solutions.
- Establish meaningful performance metrics and data requirements to ensure system reliability.
- Develop a specification framework to describe and procure an AI-driven road management plan.
- Evaluate AI solutions for fairness, robustness, and integration with existing DoT systems.

Outline

Welcome to Alta3 Research Labs!

- 🖳 Lecture + Lab: Exploring Your Lab Environment
- \blacksquare Lecture + Lab: Meet VIRGIL: Your AI Lab Coach

Designing the Ultimate AI Road Management Plan

- 🗐 Lecture: Course Overview
- 1. Introduction and Core Concepts
 - 🕮 Lecture: AI Revolution in Road Infrastructure
 - \blacksquare Lecture + Lab: Discuss Local DoT Challenges

- 2. Essential Technologies for AI Road Management
 - 🗐 Lecture: Data Collection Methods and File Formats
 - 🗐 Lecture: AI Models and Computer Vision
 - 🗐 Lecture: Edge Computing and Geospatial Systems
 - 🖳 Lecture + Lab: Lab: Explore Sample GeoTIFF and GeoJSON Data
- 3. Case Studies and Technology Applications
 - 🗐 Lecture: AI Case Studies for Road Maintenance
 - 🖳 Lecture + Lab: Activity: Technology Analysis for Your DoT
- 4. Backend Systems and Data Processing
 - 🗐 Lecture: Backend Architectures and Data Pipelines
 - 🗐 Lecture: Leveraging Large Language Models (LLMs)
 - 🖳 Lecture + Lab: Lab: Simulate Data Pipeline
 - 🖵 Lecture + Lab: Activity: Draft Functional Requirements
- 5. Performance Requirements and Validation
 - 🗐 Lecture: KPIs and Validation Strategies
 - 🖳 Lecture + Lab: Lab: Calculate Performance Metrics
 - \blacksquare Lecture + Lab: Activity: Draft Performance Targets
- 6. Advanced Data Requirements and Governance
 - 🗐 Lecture: Data Quality and Governance
 - 🖳 Lecture + Lab: Lab: Preprocess Imagery and Assign CRS
 - \blacksquare Lecture + Lab: Activity: Define Data Ownership and Security
- 7. Non-Functional Requirements (NFRs)
 - \blacksquare Lecture: Defining NFRs for AI Solutions
 - 🖳 Lecture + Lab: Activity: Prioritize and Draft NFRs
- 8. Ensuring Fair and Reliable AI
 - \blacksquare Lecture: Fairness and Robustness in AI
 - \blacksquare Lecture + Lab: Lab: Analyze AI Output Performance
 - \Box Lecture + Lab: Activity: Draft Fairness Requirements
- 9. Crafting Specifications and Workshop
 - 🗐 Lecture: Best Practices for Specification Documents
 - 🖳 Lecture + Lab: Workshop: Draft AI Road Management Specification
 - \blacksquare Lecture + Lab: Activity: Identify Evaluation Criteria
- 10. Final Summary and Next Steps
 - \blacksquare Lecture: Recap and Action Plan
 - \blacksquare Lecture + Lab: Resources and Further Learning

Prerequisites

- Basic Computer Proficiency ## Next Courses
- AI-Leadership AI-Vision

fd85223e4 2025-06-27